
Nedap/Groenendaal ES3B
voting computer

a security analysis

90% of the of the votes in The Netherlands are cast on the Nedap/
Groenendaal ES3B voting computer. With very minor modifications,

the same computer is also being used in parts of Germany and France.
Use of this machine in Ireland is currently on hold after significant

doubts were raised concerning its suitability for elections.

This paper details how we installed new software in Nedap ES3B voting
computers. It details how anyone, when given brief access to the devices

at any time before the election, can gain complete and virtually
undetectable control over the election results. It also shows how radio

emanations from an unmodified ES3B can be received at several meters
distance and be used to tell who votes what.

Rop Gonggrijp, Willem-Jan Hengeveld,
Andreas Bogk, Dirk Engling, Hannes Mehnert, Frank Rieger, Pascal Scheffers, Barry Wels

Stichting "Wij vertrouwen stemcomputers niet"
(The “We do not trust voting computers” foundation)
info@wijvertrouwenstemcomputersniet.nl

Last revision: October 4, 2006 17:21
http://wijvertrouwenstemcomputersniet.nl/other/es3b-en.pdf

Abstract

The Nedap ES3B electronic voting computer is a system that belongs to the DRE (Direct
Recording Electronic) class of voting computers. As such it only records the votes in memory.
The system requires ultimate trust, since it produces an official election outcome that cannot be
verified independently. In this paper we describe the results of an independent review of the
Nedap ES3B electronic voting computer that was done without consent of the manufacturer,
without access to source code, and within roughly one month. This paper details all the steps we
needed to take to create and install our own demonstration software on the machine, as well as a
modified version of its own software: a version that lies about the election results. It also details
a practical attack that allows a remote observer to get some information about what is being
voted on an unmodified Nedap ES3B computer by exploiting compromising radio emanations
from the device. In this paper we show that the over-all security design of this computer relies
almost solely on the near-universally deprecated concept of ‘security by obscurity’. Since the
problems we found stem from the very design philosophy, we see no quick fixes that could
make this device sufficiently secure.

We conclude that the Nedap ES3B is unsuitable for use in elections, that the Dutch
regulatory framework surrounding e-Voting currently insufficiently addresses security and we
pose that not enough thought has been given to the trust relationships and verifiability issues
inherent to DRE class voting machines.

1

mailto:info@wijvertrouwenstemcomputersniet.nl
mailto:info@wijvertrouwenstemcomputersniet.nl
http://wijvertrouwenstemcomputersniet.nl/other/es3b-en.pdf
http://wijvertrouwenstemcomputersniet.nl/other/es3b-en.pdf

1. Preface
We, the authors of this paper, are part of a growing group of computer experts that opposes

the use of electronic voting technology that is built in such a way that the outcome of an election is
not voter-verifiable. We believe public elections are pointless unless people have the right and the
meaningful possibility to verify that that their votes are counted correctly. We further strongly
believe that trade secrets, secret computer programs and secret test reports have absolutely no place
in any democratic election.

Given the fact that the technical specifications and source code to most e-Voting systems are
not publicly available, much of what the world knows about the technical inner workings of these
closed systems comes from reports such as this one or the recent work done by Princeton University
researchers (Feldman et al., 2006). It is a sad fact that public awareness of something as basic as the
inner workings of the modern ballot box depends on reports written by researchers that managed to
somehow get their hands on a well-guarded piece of secret voting technology so they can take it
apart. We see grave danger looming if our children grow up thinking it’s quite normal for them not
to be allowed to know how elections work. We sincerely hope this report will help convince the
reader to do his or her part to make sure ‘black box voting’ is abolished.

This report openly discusses vulnerabilities that affect the particular voting system used by
90% of the voting public in The Netherlands. Any vulnerabilities discussed herein affect the very
foundations of our democracy. Some will argue that by discussing and demonstrating these
vulnerabilities, we are helping the bad guys. Some might even argue we created a problem that did
not exist before. This is the full disclosure debate, and although it predates the invention of
computers, it has been a lively part of the computer security community culture for decades. It’s the
debate between those that feel vulnerabilities should be told only to the manufacturer and people
that feel all those affected by a vulnerability have a right to know so they can decide for themselves
how much trust they place in a given system. In the case of a voting system, it is obvious that any
security problems could affect all of society.

We took apart these computers because we believe we had a right to find out how our own
elections work. We published this paper because we believe that you, the voter, have a right to know
what independent experts think of the computers that count your vote.

2

2. About our study
2.1. The equipment we analyzed

This analysis deals with the Nedap/Groenendaal ES3B voting computer. Together with the
ISS election management software, this computer is sold by the cooperating companies Nedap (who
mainly do the hardware) and Groenendaal (who mainly do the software).

We started analyzing, on August 23rd of 2006, an ES3B voting computer, a reader unit, the
mechanical keys needed to operate the system, two ballot memory modules and the accompanying
ISS MS-Windows software. We got all this equipment on loan from municipality A in The
Netherlands. Because we were supposed to return the equipment by the end of September, we kept
looking for more computers and accessories. On september 6th of 2006, we found municipality B
willing to sell us two ES3B computers, another reader unit and two more ballot memory modules.
All machines have current software (ES3B 2.12 on two of the voting computers, ES3B 2.11 on both
reader units and one voting computer). To the best of our knowledge, these are the exact machines
and software versions that 90% of The Netherlands votes on, and at least some of the computers we
now lawfully own were in use at elections up until the 2006 local elections in The Netherlands.
Barring intervention after publication of this report, we fully expect the machine we gave back to
municipality A to be used again in the upcoming elections.

2.2. Early publication because of time constraints, work continues
Because we wanted our results to be available before the November 22nd of 2006 Dutch

national parliamentary elections, we were in a hurry. This preliminary report is the result of a
month’s worth of work. Much more research needs to be done and there are very definite open
questions. One of the larger gaps in this report for instance is that we took only a very cursory look
at the ISS (Integraal Stem Systeem) Windows software that is used to administer the ES3B voting
computers. We have chosen the attacks we implemented based on the limited time and resources
available to us. Throughout this paper we will detail a few other attacks that, although we did not
implement them, are practically feasible to the best of our knowledge.

As we are writing this paper, further research on the ES3B continues. Our website at
www.wijvertrouwenstemcomputersniet.nl/Nedap provides more detailed technical information that
would be impractical to include in this paper, such as system memory maps, quite a few programs
and many more photos. If you wish to do serious follow-up research involving the ES3B, feel free
to contact us.

2.3. Quick fixes?
As a result of earlier press-attention given to our campaign (but before these specific

vulnerabilities surfaced), the Dutch government announced some measures to “help increase public
trust in an already sufficiently secure electronic voting system”. According to the interior ministry,
the devices will be sealed, the software will be “extra protected” and certification company TNO
will perform extra checks on the software, all before the upcoming election. Details on how these
measures will be implemented are not available at this time.

Given the proximity of the upcoming elections and the obvious severity of some of the
vulnerabilities discussed herein, we decided to include in this paper as much as possible of our
thinking regarding these and other countermeasures.

3

3. Mechanical keys
3.1. Trust placed in mechanical locks

Dutch election law requires physical keys to be used as part of
an electronic voting system. The entire legal framework surrounding
voting computers sees these physical mechanical keys as an integral
part of the security of the voting process. Dutch election law and
regulations makes frequent mention of these keys1. The law regulates
that voting machines are built such that voting cannot happen
without the presence of a key and the law even stipulates that the
chairperson of a polling station puts the key in an official sealed
envelope after the election is closed. Nedap/Groenendaal, in their
2006 election newsletter, state “programming unit and key as well as
ballot modules need to be stored in the safe” 2.

As we can see, both regulators and implementers of electronic
voting place trust in traditional mechanical locks and keys and want
users to adhere to strict procedures regarding key management.

3.2. Chosen system
The key system chosen by Nedap for both the locks on the voting computer is the “C&K YL

Series 4 Tumbler Camlock”. This lock always comes with the same key (marked “A126”), which
probably explains why the same key is used on all 8000 ES3B machines throughout The
Netherlands. Spare keys can be ordered separately online for roughly a Euro each by searching for
the product number: 115140126. We ordered, payed for and were subsequently supplied with 100 of
these keys without any problem. According to the product datasheet3, typical applications for this
lock include “copy machines and office furniture”. Even if spare keys were not so readily available:
this is quite literally the type of lock we can open with a bent paperclip.

The reader unit has, as stipulated by law, a lock with a different key for the slot marked
‘programming’ (it is marked “A154”), which is used to erase the ballot memory modules and to
write new candidate lists to the modules. The key is of the same insecure type and the we expect it
to also be the same all over the country.

3.3. Conclusion
Even when taking into consideration that the law does not say the physical locks needs to be

of decent quality, we feel this lock is obviously grossly inadequate given the trust placed in it.
Either this “toy lock” needs to be replaced by a real lock, or the law needs to be rewritten such that
it doesn’t inspire confidence where none is warranted.

4

1 Voorwaarden voor stemmachines 1997: art 3 lid 2, art 5 lid 2, art 6 lid 4, art 7 lid 2.
 Kiesbesluit: art. J27 lid2, art J29 lid 2, art. K1.

2 http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf (Oct 2, 2006)

3 http://www.ittcannon.com/media/pdf/catalogs/Leaf/YL_1apr.pdf (Oct 2, 2006)

http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf%06
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf%06
http://www.ittcannon.com/media/pdf/catalogs/Leaf/YL_1apr.pdf%06
http://www.ittcannon.com/media/pdf/catalogs/Leaf/YL_1apr.pdf%06

4. Understanding the ES3B
4.1. The components

The Nedap ES3B system as it is in use by a typical Dutch municipality consists of multiple
ES3B voting computers, at least as many ballot memory modules, a reader unit to be attached to a
PC via the serial port and an installed copy of the ISS (Integraal Stem Systeem) software running
on a PC under Microsoft Windows. The municipal election officials write the candidate lists into the
“ballot memory modules” using the reader unit. Then these modules are installed into the voting
computers before they are deployed. After the election is closed, the results are printed by each of
the voting computers as a paper backup. The ballot memory modules, which now also contain all
the votes, are carried to a central location to be read using the reader unit so the results can be
tabulated..

4.2. First contact
We already knew quite a lot about the Dutch Nedap computer from the Irish “First Report of

the Commission on Electronic Voting” (2004). As we took it apart, we confirmed that this was
indeed a system built around a 68000 processor that came with 256kBytes of EPROM, 8 kBytes of
EEPROM, 16 kBytes of RAM, two 6850-based serial ports, a printer port, two screens (4 lines of
40 characters on the voter display, 2 lines of 40 characters on the small election official console)
attached to a cable. After taking the system apart, photographing everything and dumping the
contents of the EPROMs, we had to put it back together again. First we had to create a working
setup to work with the system in normal operation. We installed the ISS software on a notebook PC
running Windows XP and we hooked up the reader unit. After some experimentation we could
configure a new election, parties, candidates and a polling station. We could then program the ballot

5

memory module that carries the list of parties and candidates to the voting computer. After we
inserted it in the voting computer we could cast votes and we could close the election and print the
results. After removing the module and placing it in the reader, we could see the ISS software list
the votes.

4.3. Maintenance mode: “GEHEIM”
The ISS software has a ‘maintenance mode’ that is supposed to be only accessible to members

of the “verkiezingswacht”, the Nedap election-day helpdesk. You need a password to get the
software in this mode. A quick look in the binary revealed this password to be “GEHEIM”, the
Dutch word for “SECRET”. The maintenance mode, among other things, allows the helpdesk to
read the binary contents of a ballot module plugged into the programming slot of a reader unit. By
sniffing the serial commands between the ISS software and the reader unit, we figured out how to
issue these commands ourselves and subsequently wrote a program in Tcl that we could use to read
the entire contents of a ballot memory module.4

6

4 We used the same code to read the original contents of the system’s EEPROM chip, since the ‘R’ command allows
reading of the entire memory space of the system.

Since we were at that stage able to produce memory images in various stages of an election,
we could see what changed between them. This produced an overview of where and how the ES3B
stored parties and candidates, as well as how the votes were stored.

4.4. Trace wires, look up parts, read disassembly, repeat, ...
We used the IDA pro5 disassembler to look at the compiled binary image contained in the

system’s EPROMs. Because the hardware is very straightforward and the software very well-
written, we were very quickly able to make some sense of the binary. The IDA database contained
more and more comments as the hours passed. Most of the IO was figured out by a combination of
visual inspection of the printed circuit board and looking at the disassembled code. This was greatly
aided by the fact that besides the main components, only 74 series TTL chips were used.

As we progressed, our memory map of the system grew. IO lines to the various keyboards, the
key switch, the displays and the printer were documented. We also found more and more about the
internals of the motherboard, such as how a watchdog line needed to be pulsed to make sure the
board did not keep resetting itself. We also found the small switch on the motherboard that switches
the computer into service mode, allowing all of the parameters from the EEPROM (such as the
system ID) to be changed through menus on the voter display.

4.5. The ballot memory module
We took apart a memory module and created a schematic. The schematic shows how the two

flash chips, which handle the odd and even addresses, both depend on their own hex inverter glue
logic chip to make sure that a malfunctioning part will only take out half the memory. All data is
written both in the odd and the even half of the module to create redundant data storage.

7

5 http://www.datarescue.com/

http://www.datarescue.com/%06
http://www.datarescue.com/%06

Looking at the schematic, we see that data bit 5 on both odd and even flash chip is pulled

down to ground. In addition, bits 5 and 7 have been swapped. It took us a while to figure out that
this particular bit needs to be set to one in order to issue the flash erase command on the Intel
P28F010 flash chips used, but that it could stay at zero for all other flash programming commands.

We then noticed that this wire is only connected on the ‘programming’ slot of the
motherboard, meaning this bit will always be zero in the slot that is used in the voting machine and
in the slot that is marked ‘read’ in the reader unit. So only the slot marked ‘programming’ in the
reader unit can ever issue the erase command. The swap between bits 5 and 7 places this bit
conveniently out of the way. Since the bus on the mainboard is pulled up, the voting machine itself
will always write zeroes and read ones on bit 7 of every byte in the ballot memory module.

Candidate lists are stored with the button coordinates of each candidate as well as a
checksum, and that part of the memory is subsequently filled with random data. The votes are
stored in a different part of the module in a location based on the system timer, skipping to the next
one if that location is already taken. Because the pointer in the random locations wraps around after
it reaches the end of the module in roughly five minutes, we see no practical attack to get the
sequence of the votes cast unless the time each vote was cast is known with some level of precision.

Four copies of each vote are stored, and each copy has “hamming code” error correction
added, so storage is extremely redundant. Two of these copies are stored with the bits inverted,
which makes sure that subsequent flash operations (which can only turn ‘one’ bits into ‘zero’ bits)
cannot change any votes.

Besides candidate lists and votes, the module also stores its ID, and the number of times it has
been erased6. It also stores the name and date of the elections7 on the module. After the first vote is
cast, it also stores the ID of the voting machine it is in.

4.6. The EPROMs
The software for the ES3B is programmed into two EPROM chips, each holding 128 kBytes.

Both chips are socketed, which allow for them to be easily exchanged. The system is built such that
one EPROM holds the odd and one holds the even memory addresses. Both EPROM chips carry a
small sticker marked with “ES3B”, the software version number, the word “ODD” or “EVEN” and
a 32-bit checksum written as hexadecimal characters. This checksum is a simple addition of all
bytes in the EPROM. During most of our tests and programming, we replaced these EPROMs by
two USB EPROM emulators8 so we could load our experiment code much faster.

4.7. Running our own software: “Nedap Chess”
It started with what we thought was a very obvious statement. We claimed on our website that

the Nedap was just another computer, and that as such it could just as easily be programmed to play
chess or to lie about the election results. We didn’t think more of it until Jan Groenendaal, placed a
document9 on the Nedap/Groenendaal website to talk about our website "Wij vertrouwen
stemcomputers niet". In it, he says: “[...] And with regard to the claim that our machine can play
chess: I’d like to see that demonstrated”.

8

6 Both can be reset by changing the module ID in the ISS software after going to the service menu.

7 A maximum of two elections can be done at the same time using the ES3B.

8 WICE-M4 emulators made by Leap Electronic

9 http://www.election.nl/bizx_html/ISS/documents/WIJVERTROUWENSTEMCOMPUTERSNIET.pdf (2 Oct 2006)

http://www.election.nl/bizx_html/ISS/documents/WIJVERTROUWENSTEMCOMPUTERSNIET.pdf
http://www.election.nl/bizx_html/ISS/documents/WIJVERTROUWENSTEMCOMPUTERSNIET.pdf

So obviously, one of our first goals now that we had access to the device was to make it play
chess. Apart from proving our point, programming it to do this would also confirm that we knew
everything we needed to know about the hardware before getting into the election fraud business.
After having learned roughly how the hardware worked we used a gcc 68000 crosscompiler to
create a Nedap IO-library containing functions to initialize the system, write data to the display,
read the keyboard, and write debug messages to the UART. Together with newlib, a small clib
implementation, we then managed to compile and run Tom Kerrigan's Simple Chess Program
(TSCP) 10. This was non-trivial only because we had to squeeze out quite a few tables to make it
run using only the available 16 kBytes of RAM. Getting the chess pieces to magnetically attach (the
keyboard is mounted at an angle) was also not that easy since the foil switches are stuck to a plastic
base. We ended up using using 2 and 5 Eurocent coins underneath the paper, taped such that we
could press the underlying foil switches with the edge of the coin.

It knows all the rules and every now and then it can be surprisingly clever for what it is. But
in all honesty we have to admit that it does not play chess all that well.

4.8. Conclusion
The Nedap ES3B, regardless of its suitability for elections, is a great system to play with. We

much enjoyed our renewed acquaintance with the ESBs vintage electronics. The fact that it uses no
PALs or other custom components make it a very easy system to come to grips with. When the
ES3B is no longer used for elections, the sudden availability of such a large number of systems
might make it an interesting system that could be used to teach young people about the history and
basics of computers. We might even put a QWERTY overlay on the keyboard and port a BASIC
interpreter to it.

9

10 http://home.comcast.net/~tckerrigan

http://home.comcast.net/~tckerrigan/%06
http://home.comcast.net/~tckerrigan/%06

5. Modifying their software
5.1. Introducing “Nedap PowerFraud”

The idea of inserting one’s own program EPROMs is not new: again the Irish Commission on
Electronic Voting, in their First report (2004: 139) carefully details the attack. It’s easier here: the
machines tested in Ireland had paper seals that needed to be broken in order to get access to the
inner box with the electronics, whereas the Dutch machines at present have no seals. Interestingly,
the Dutch interior ministry announced11 on September 28th of 2006 that all the Nedap machines
will be sealed before the November elections. In 2004, in response to parliamentary questions12
about the Irish report, the responsible minister claimed the Irish situation was fundamentally
different so results from the Irish studies did not apply to machines in The Netherlands.

When we started to think about demonstration software that would lie about election results
(called “Nedap PowerFraud”), we kept in mind that the system should not lie after an election that
was obviously a test of the system. We decided we needed to store the votes and only decide
whether or not to perform the fraud at the moment the election was closed, so our program would
have as much information as possible to make that decision. Since the voting computer itself cannot
issue the flash erase command needed to erase the ballot memory module, and since the votes are
stored both as-is and with all bits inverted, we saw no way to change votes already stored in flash.
Hence we needed a mechanism that would store votes, so that it could write these to the ballot
memory module later, either for the candidate for which they were intended or for the recipient of
the fraudulent votes. Since the voting machine could suffer from a loss of power, we would
optimally like store these stolen votes in non-volatile storage. Since the flash on the ballot module
was ruled out because we could not erase it, we opted for the on-board EEPROM.

The ES3B’s EEPROM is normally used to store a few system configuration parameters (such
as the device ID) and some settings (such as whether or not the keyboard beep is on). But most of
the space is used for two circular buffers holding the event log and the error log of the device. In
these logs, the device keeps the system time and a number for each event or error that occurred.
Since system time always starts at zero, these times are not as helpful as one might think, they only
represent an offset relative to the last processor reset. We updated the circular buffer routines that
deal with the error log to shorten the number of entries, making space for our stolen votes. Since
our new table didn’t have space for all possible candidates, we steal votes only from the number
one on each list. Since the majority of voters pick the first candidate on a given party’s list, this is
quite acceptable. We also store the ID of the current ballot memory module and the date of the
election, so we know whether to keep or delete any stored stolen votes when the device wakes up.

We then built “hooks” into the regular ES3B code. Every time a voter casts a ballot, our code
generates a random number between 0 and 100. If the number is below the programmed percentage
of votes we want to steal, that vote is not written to the ballot module but one is added to the
corresponding 16-bit number in EEPROM. At the end of the election, our software determines
whether this was a real election or not. It then proceeds to, either honestly or fraudulently, quickly
write these votes into random locations in the ballot module, just like the real software does.

To determine the recipient of the stolen votes, PowerFraud does a case-insensitive match of
all party names with a programmed string. If it finds a match, that party becomes the recipient of
the stolen votes. This allows for the fraudulent EPROMs to be inserted long before the candidate

10

11 http://www.minbzk.nl/grondwet_en/kiesrecht/nieuwsberichten/stemmachines_nog

12 Haverkamp en Spies, CDA, 1 april 2004, KVR20183 / 2030411850 / 0304tkkvr1453 / ISSN 0921 - 7398

http://www.minbzk.nl/grondwet_en/kiesrecht/nieuwsberichten/stemmachines_nog%06
http://www.minbzk.nl/grondwet_en/kiesrecht/nieuwsberichten/stemmachines_nog%06

lists are known, and it allows a fraudulent ROM to perform the same fraud year after year, even
though the relative position of the party on the keyboard changes. It is significant to note that the
Dutch interior ministry assumes this to be impossible. A recent statement13 says: “Fraud during the
production of voting machines does not make sense because the lists of candidates are not known
then.”

5.2. How do you find out the software is lying?

5.2.1. Parallel testing
Parallel testing of voting computers is based on the notion that although the voting computer

is a black box, one can test its functionality by presenting a situation that is indistinguishable from a
polling station at the inputs of the computer while keeping a careful count of all the votes that go in.
To increase confidence in DRE-class voting computers, officials would randomly select voting
computers to be removed from the pool on the morning of election day, and replaced with other
machines. These randomly selected machines would then be used for such a test election. At the end
of the day, the totals should match with the votes that were input.

There has been some work done in the US regarding the number of machines that would need
to be tested to achieve a certain level of certainty that the election was honest. First a desired level
of confidence would need to be defined, and then the calculations would need to be done in order to
calculate the number of machines that would need to be tested for that level of confidence.
Subsequently, one would need to define what would happen if discrepancies were detected. The
“Oh my God, it is not being honest” at the very end of a busy election day would need to be
translated into something more legally binding that allows election officials to call for a new
election or keep the results from becoming accepted until more is known. The exact procedure may
need to be codified as part of the election regulations.

Assuming these hurdles are taken and a system of parallel testing is in place, the author of the
vote-stealing software can perform quite a few tests that would discriminate between a real election
and anything but the most rigorous and disciplined parallel tests. The Brennan Center for Justice at
New York University very recently published “The machinery of democracy: protecting elections in
an electronic world” (2006), which is by far the most detailed work to date to deal with procedures
for parallel testing of election systems. It isn’t all that optimistic about the method:

“However, even under the best of circumstances, Parallel Testing is an imperfect
security measure. The testing creates an “arms race” between the testers and the
attacker, but the race is one in which the testers can never be certain that they have
prevailed.” (Brennan Center, 2006: 88)

The current revision of PowerFraud has a user-selectable minimum number of votes that need
to be cast for the election to be seen as real. And although not a true parallel testing counter-
measure, it also allows the setting of a minimum number of votes a party must have before stealing
from it. This makes sure PowerFraud never inadvertently steals a party’s only vote in a given
polling station. If it did, it would alert at least one voter that something was amiss.

Next versions of PowerFraud will allow the setting of the minimum time an election should
last and we might also incorporate some statistics on the random distribution of the time between
votes and the time between the pressing of the vote-release button, the candidate button and the
“cast ballot” button. At that point we think parallel testing becomes a job for a robot that presses the

11

13 http://www.minbzk.nl/grondwet_en/kiesrecht/nieuwsberichten/stemmachines_nog

http://www.minbzk.nl/grondwet_en/kiesrecht/nieuwsberichten/stemmachines_nog%06
http://www.minbzk.nl/grondwet_en/kiesrecht/nieuwsberichten/stemmachines_nog%06

buttons because the key intervals of utterly bored human testers are very likely to exhibit
statistically improbable timing similarities.

A future version of PowerFraud will also offer a “magic button” function. What this does is
allow any voter during the day to press a previously-configured key combination on the voter
keypad, followed by the keys needed to cast a vote. The device will then store the party that
received that particular vote as the recipient for all the stolen votes, and it will not perform any vote
stealing unless the magic button was pressed. This would be impossible to catch using parallel
testing. And although post-election examination of the EPROMs would show that a fraud could
have occurred, it would be hard14 to detect whether it actually did and which party received the
stolen votes. This scenario, although impractical in national elections, would be very practical in a
town of, say, ten to fifteen thousand inhabitants where the attackers could send one voter to each of
around ten polling stations to press the magic button before they cast their vote.

5.2.2. Verifying the contents of the EPROMs directly
If one were to take the EPROMs from an ES3B and put them in an EPROM reader coupled to

a computer, one could compare the contents to a known to be good image of the software to verify
that the software has not been tampered with. One could also compare generated checksums, as
long as they are not the checksums that Nedap uses. They are simply a 32-bit hex representation of
an addition of all the bytes in the EPROM. Only cryptographic hash algorithms such as SHA-256
generate a checksum that is secure against an attacker trying to create a fraudulent EPROM with the
same checksum.

The ES3B also allows its memory contents to be read through the serial port. However if this
were ever used to test the authenticity of the EPROM, it would be easy to make the fraudulent
software lie about the contents of certain memory location through the serial port. Besides: the
serial port is only available on the mainboard. One might as well test the actual EPROM contents if
the inner box needs to be opened anyway. We can envision a small hand-portable device that would
clip over the EPROMs while they are still in their sockets, quickly testing their contents using a
small built-in micro-controller. Of course the next problem would be whether or not that device and
the people handling it are trustworthy.

5.3. Making sure attackers cannot install software
Given that we have no easy way to tell whether manipulation software was installed, we will

need to explore ways to make sure it does not get installed in the first place. Please note that the
chapter “On security and elections” explains why fixes along these lines may actually decrease
security depending on your viewpoint.

5.3.1. Fix the ES3B so it does not run untrusted software
We do not believe the “anyone can insert their own EPROMs vulnerability” can be fixed in

the current design. In order to fix this, one would ideally want a system in which a program already
in the processor domain can use the presence of cryptographic signatures to evaluate whether or not
it wants to execute/install a newer program. The Nedap ES3B is in essence a very expensive 1980’s
home computer. It is not a system that can be retrofitted with the same security-enabling features
that today’s low-cost mobile phones, pay-TV decoders and game consoles come with.

12

14 Since the compromising data would have been erased from the EEPROM, it would involve reading past contents of
the EEPROM. Not impossible, but we expect this to be costly and time-consuming.

5.3.2. Upgrading physical security
One line of remedies would make sure an attacker could not get surreptitious access to the

devices. This can be done by upgrading the physical security of the storage locations and transport
logistics. Since this attack against the outcome of the election hinges on physical access to the
devices, it would seem prudent to deny access to unauthorized individuals. Given that at least some
of these computers are currently stored under rather abysmal security conditions15, this would add a
great deal of security against outside attackers. However it would not significantly increase security
against attacks performed by insiders. In situations where human guards are employed, the added
security would even increase the number of insiders that have convenient round the clock access to
the computers.

5.3.3. Tamper-evident seals
One could also add tamper-evident seals to the inner box holding the electronics. This only

makes sense if one tests the contents of the EPROMs first to make sure the attackers did not get
there first. This would make it harder for attackers to get to the EPROMs after the seals are applied
without this being detected. Also note that applying seals assumes the person or persons applying
them would have to be ultimately trusted because they are in a perfect position to swap the
EPROMs first. Since a wide range of people would need to properly authenticate and inspect these
seals under non-ideal conditions, the value of these seals in adding more than token security can
easily be over-estimated.

Note that the German version of this device, the
ESD-1, apparently has a seal on the inside, covering the
internal electronics housing. Even if one accepts the
limitations of sealing listed above, this seal is grossly
insufficient because it is truly trivial to bypass. It appears
printed on paper and as far as we can tell uses none of the
existing tamper-evident technologies. Given that the
Dutch interior ministry has announced that all existing
machines will be sealed before the next elections, we
believe it’s significant to notice a pattern here: tell Nedap
they need to incorporate a lock and they pick the
cheapest lock imaginable, tell them to put a seal on it and
they laser print their company logo on some paper labels.

5.4. Conclusion
The parallel testing method at best presents the testers with an arms race and the other

methods appear to exclusively address the threat posed by outsiders. We claim that it is highly
questionable whether a sufficient level of over-all security can be accomplished by employing any
combination of counter-strategies currently being discussed. We cannot think of other measures that
would mitigate this problem.

13

15 As documented in the “EénVandaag” October 4th 2006 news television broadcast. It documents how the 400 or so
Nedap ES3B voting computers serving the city of Rotterdam are stored in an old building on a somewhat shady
industrial lot with no alarm or other security measures.

6. Compromising emanations
6.1. Spurious emissions

Many electronic devices transmit radio signals, even when they are not intended to do so. In
the case of computers, such transmissions often leak information about what the computer is doing.
The military and intelligence communities have known this for many years and are actively
exploiting this against adversaries as well as in shielding their own equipment. We decided to take a
look at the radio spectrum emanating from our machines to see of we could determine what they
were doing by looking at the transmissions. For this purpose we used an AVCOM PSA 65A
spectrum analyzer, as well a number of handheld and tabletop receivers and various antennae.

Please note that although it is probably legal in The Netherlands to look at the emissions from
one’s own Nedap, it is probably illegal to interpret signals from one that is in use at an election.

6.2. Special characters and the display refresh frequency
After finding a number of ‘empty’ signals that do not appear to contain much information, we

found one that could be received at many frequencies. Among many other frequencies, it appears at
around 36 MHz, 38MHz, 58.3 Mhz and 150 MHz. In both AM and FM, the main energy is at the
refresh frequency of the display. The signal is a loud buzz, usually humming at roughly 72 Hz.

The LCD voter display on the Nedap ES3B consists of 4 lines of 40 characters each. Each two
lines are driven by a separate Hitachi HD44780 controller. The computer uses a parallel bus to tell
the display what to display and where to display it. The controller has its own built-in character set
which contains the standard ASCII characters plus, depending on the model, a choice of either
Japanese or European extended characters. It can also display up to eight different characters that
are not in this character set. To use this feature, the computer must first issue a special command
sequence to tell the display controller what the character looks like. For some reason (we suspect
cost) Nedap decided to use the Japanese version of the display controller. But they have written
software to display any accented or other non-ASCII characters in party and candidate names by
first defining special characters for them.

It would appear that if a special character is displayed, the controller has to do extra work
every time the display is updated. This causes the display refresh frequency to drop from 72Hz to
58 Hz. The difference between these two frequencies can be determined by ear. In The Netherlands,
the name of the major political party CDA is written in full on the display when the voter chooses
any CDA candidate: “Christen Democratisch Appèl”. So using only a simple scanner or short-wave
receiver, we can tell whether or not a voter is currently voting for a party or candidate with an
accent in the name. In Germany for instance this would yield a “Grünen detector”, although the
much more frequent use of non-ASCII characters in German names would diminish the selectivity
somewhat.

We have observed large signal strength variations between the three devices we have tested
this on. In all cases we could receive the signal at a few meters. In one case we could receive the
signal up to 25 meters away. Note that a signal like this can be filtered from noise long after the
unaided human ear stopped hearing it, so range can be significantly extended using digital signal
processing. When experimenting with software to detect these two tones, we noticed that filtering
for 216 Hz and 232 Hz respectively, each with a bandwidth of 10 Hz, seems to work better than
filtering at the base frequencies of the audible tones. We also noticed energy present at 3845 Hz
when the vote-button is pressed.

14

The image above shows a spectrum waterfall display 16 of the received audio signal. The
difference between a candidate from the CDA (middle) and any other party (top and bottom) is
clearly visible.

To fix this, the display update frequency always needs to be the same. The display routine in
the ES3B’s software could easily be modified to always display at least one special character on the
display. To make sure this is not visually disturbing this could for instance be a space that is actually
defined as an empty special character.

6.3. Fingerprinting display data bursts
On the same frequencies as the above refresh signal, we can also see a short data burst as the

computer writes data to the display. Through the audio path of a scanner, we can make out clear
differences for different candidates. Since this signal is generated by a parallel bus, it will likely be
hard to decode precisely what is being written the display, especially when one has only a narrow-
band audio signal like we did for our experiments. However: we can easily profile all the bursts for
the various candidates and simply match the received signal to all known candidates.

The four spectrum images on the next page show this burst, roughly 200ms in length. The
upper two images were received when selecting the same candidate, the lower two were made after
selecting different candidates.

15

16 Made with SpectrumLab software

6.4. Listening to the display itself
We did a test while we had our own software display three different screens with a few

seconds between them. First we showed the left half of the screen filled with “@” characters, then
we showed the right half filled with “.” characters and then we showed an empty screen. The
spectrum plot shown below shows differences, meaning something can be said about the static
contents of the display without listening to the communication between the computer and the
display, which happens only briefly. We expect more receiver bandwidth and more processing
power would be needed before one can profile display contents in this way.

16

6.5. Determining impact - defining what constitutes a valid attack
For an attack against ballot secrecy to be practical, we deemed it would have to be

significantly easier to perform than obvious attacks such as mounting a small hidden camera that
would allow an attacker to see the display of the machine. It is easy to see that much more study is
needed: we have only tested the radio emissions on the three different Nedap computers that we had
access to, and it may well be that many computers in the field radiate much more or less than any of
the machines we looked at.

6.6. Conclusions
The first attack, the “CDA detector”, is practical by any definition since it can be performed

by ear and takes only a small and cheap scanner or short-wave receiver. If the ES3B were to be used
this election, this problem would need to be fixed immediately. Alternatively, if developing and
distributing the simple fix needed is not feasible before the upcoming elections, assuming there are
no legal impediments, CDA’s name could be changed such as to not include the accent.

Fingerprinting display data bursts takes some initial work to create software, but is still very
feasible and cheap to perform once the software exists. Given that this attack would yield the exact
candidate and party that is being voted for and that countermeasures are fairly straightforward to
implement, we feel it would need to be protected against also.

Listening to the display itself would appear to need both a much larger bandwidth to be
received and much more digital signal processing. And even then, the range would likely be more
limited than it is for the two previous attacks. Within the limits of this preliminary study, we tend to
scale this attack below our threshold for a valid attack, although further research as well as the
upcoming availability of cheap and portable software defined radio equipment may change this.

It is remarkable nobody appears to have ever tested for any spurious emissions, or thought to
include specifications regarding compromising emanations in the legal requirements. It would seem
obvious that new versions of regulations regarding voting computers specify a level of shielding
that prevents any such problems.

17

7. Other practical attacks we can think of
7.1. The screen and keyboard man-in-the-middle attack

The voter display on the device consists of 4 lines of 40 characters, controlled by a Hitachi
HD44780 controller that is attached with an 8 bit wide bus and some control lines. The keyboard is
a simple passive matrix of foil contact keys that is scanned by the computer. One can envision a
small board that would be places inside the (rather spacious) keyboard housing and that would
terminate the cables from the motherboard. It would then have new cables to plug into the existing
keyboard and screen circuit boards. If this board would have, say, a commercial off-the-shelf FPGA
with built-in microprocessor, it could pretend to be a keyboard and a screen towards the computer
and pretend to be a computer towards the display and the keyboard. Since our little board learns the
names of parties and candidates the first time a voter votes for a given candidate, it would have all
the necessary information to press the wrong button towards the computer and still present the voter
with a readout that reads to chosen candidate. It could do the same level of parallel testing
countermeasures that PowerFraud does except it would have a real time clock to aid in detection of
parallel testing.

Since none of this would happen inside the main computer housing, placing a seal on this
housing would not help against this attack. The sheer number of small torque screws on the
keyboard make this manipulation harder, but they also make inspection to check for this attack
harder. We’ve never really played with FPGAs much, so if there is any doubts raised over the
practicality of this attack, we might have a go at it.

7.2. Placing a micro-controller in the ballot module
A ballot module consists on a simple circuit board with a few holes that allow the blue plastic

shell to be snapped on. One could quite easily create a circuit board that holds a processor, say an
Atmel AVR family micro-controller, quite possibly equipped with some external (modern) flash or
battery backed-up RAM. This module would store everything honestly until the vote is closed,
which it knows because a byte of 0x00 is written in one particular location on the module. At that
point it would decide whether or not this was a real election and act accordingly, after which it
would allow its votes to be read by the computer for printout. This module could again have a Real
Time Clock, allowing for more sophisticated parallel testing detection than would be possible inside
the computer itself.

7.3. The ballot manipulator (not a real attack in The Netherlands)
One could easily create a small circuit board with a battery and a micro-controller with

sufficient GPIO pins (such as the Atmel ATmega 128) that has a male DIN41612AC connector on
it. A program in the micro-controller could manipulate at will the contents of any ballot module that
was plugged into it.

Using this circuit, anyone with access to a module as it is being transported to the reader unit
and the computer running ISS can change the votes on the module. We realize this is not a true
attack in The Netherlands, because it would not alter the data on the print-out, which has already
been made at that point. But in other countries, such as Ireland, where the counting of the votes on
the module was supposed to happen at some location other than the polling station this attack may
very well be of practical value. The First Report by the Commission on Electronic Voting
(2004:140) also details this attack.

18

8. On security and elections
8.1. Security By Obscurity

Cryptography is the science that deals with secret codes. And in cryptography, Kerckhoffs'
principle was stated by Auguste Kerckhoffs in the 19th century: a cryptographic system should be
secure even if everything about the system, except the key, is public knowledge. Renowned security
expert Bruce Schneier takes Kerckhoffs’ principle to have meaning outside of cryptographic
systems when he says 17:

"Kerckhoffs' principle applies beyond codes and ciphers to security systems in
general: every secret creates a potential failure point. Secrecy, in other words, is a
prime cause of brittleness—and therefore something likely to make a system prone to
catastrophic collapse. Conversely, openness provides ductility.”

The more complex and unchangeable the secrets are that you need to keep, to more prone
your system is to catastrophic failure. Conversely, the cheaper and easier it is to change the secrets
in a system, the more robust it becomes.

In contrast Jan Groenendaal, the maker of the ES3B software, in 2006 says: 18

“However Open Source or publishing the source code provides opportunities for
dubious characters and unfortunately election and election fraud are both as old as
democracy itself. The fact that only few people have this knowledge can also be
interpreted in a positive light.
 If something goes wrong one quickly knows where to look, and this mere fact is a
deterrent for willful manipulation (inside attack)”

This reasoning is a clear example of a controversial design practice often dubbed Security By
Obscurity: the inner workings of his system need to remain secret to protect our elections from
“dubious characters”. Many of the poor design choices that underlie the ES3B’s security problems
can be excused against the backdrop of the 1980s, when fewer options were available to system
designers and many of the present-day security concerns had not yet surfaced. But given that Dutch
democracy now completely depends on his technology, the fact that Groenendaal’s 2006 viewpoints
on security are so far removed from the general consensus in the computer security community is
cause for concern.

8.2. Security of what against whom?
In the security community it is not considered very productive to make statements about the

security of any system without at least defining what it is we’re securing, and what it is we’re
securing it against. In the case of voting systems, the general concept of security is often mistakenly
taken to mean “the system-wide level of over-all security against any attack, mounted by outsiders,
that affects the election results”. There are many more possible interpretations of security when it
comes to elections. The above definition for instance ignores the risk posed by an attack by
knowledgeable insiders, or that of an attack that involves only the secrecy of the ballot.

We would argue that in the case of voting systems, the only meaningful security against
insiders is to have a voting mechanism of which all the details are published, and that a substantial

19

17 In a long interview with The Atlantic Online: http://www.theatlantic.com/doc/200209/mann/4 (2 Oct 2006)

18 http://www.election.nl/bizx_html/ISS/documents/WIJVERTROUWENSTEMCOMPUTERSNIET.pdf (2 Oct 2006)

http://www.election.nl/bizx_html/ISS/documents/WIJVERTROUWENSTEMCOMPUTERSNIET.pdf
http://www.election.nl/bizx_html/ISS/documents/WIJVERTROUWENSTEMCOMPUTERSNIET.pdf

portion of the general population is capable of comprehending in-depth. We pose that any other
solution creates a situation in which the population depends in essence on reassuring statements that
cannot be verified independently. In a country where e-Voting has replaced traditional paper ballots,
the level of confidence with which the population views these statements is then by definition the
upper bound for the trust the population can have regarding the outcome of any election, and thus in
effect a measure for the legitimacy of government. Continued reliance on DRE-class systems will
prove increasingly problematic given (among other things) the fluid state of computer security, the
increasingly widespread awareness of issues with voting technology and the all too often warranted
general distrust of reassuring statements regarding the security of systems whose inner workings are
secret.

8.3. Add more security, end up with less
By adding extra security measures against the over-emphasized threat posed by outsiders, one

can actually increase the risk posed by insiders. It is not hard to imagine a voting system that would
be much more “secure” by today’s standards as they would apply to equipment in other fields.
Today’s mobile phones for instance often combine a processor, execution memory and tamper-
resistant key storage to make sure only the manufacturer (who has the cryptographic signing keys)
can update the software. These mechanisms can sometimes still be circumvented, but at least they
offer a layer of security that is completely absent in the Nedap ES3B. But by adding “security” in
this way, the device could also resist any attempts by independent inspectors to see what code it is
actually running. So what is a desired feature from the viewpoint of the manufacturer (who is an
insider) trying to protect a mobile phone from unauthorized manipulation may thus be a highly
undesirable feature from the viewpoint of the concerned voter, who is by definition an outsider.

20

9. Over-all conclusions
9.1. ES3B insufficiently secure

The extent and impact of the vulnerabilities presented in this paper in our view precludes
using the ES3B in any election. Unless anyone comes up with an effective short-term remedy that
we have not considered, we believe the short-term remedies available provide insufficient relief.

Let us for a moment assume that the voting public will continue to have trust in DRE-class
systems, and let us ignore the problematic lack of transparency and the accompanying threats posed
by insiders. Even in such a scenario the mere lack of security features offered by modern processors
(such as tamper-resistant key storage and a source of cryptographically strong random) mean the
existing Nedap ES3B machines, no matter what software runs on them, cannot ever be made to
meet any responsible security criteria for such a system.

9.2. Dutch e-Voting requirements insufficient
It is important to understand that the ES3B meets all Dutch regulatory requirements. These

requirements, although very detailed on topics that deal with availability, say absolutely nothing
about security against any kind of attack. Without exaggeration, even a brain-numbingly insecure
system19 would would meet Dutch legal requirements, provided the buttons are of a specific size,
the computer can withstand moist conditions without presenting a shock hazard and no votes are
lost when power fails. Across our research, we noted remarkable similarities to the present situation
in the United States. Feldman et al. (2006: 19) write:

Despite their very serious security flaws, the Diebold DREs were certified according
to federal and state standards. This demonstrates that the certification processes are
deficient. The Federal Election Commission’s 2002 Voting System Standards say
relatively little about security, seeming to focus instead on the machine’s reliability if
used non-maliciously.

When a building that was built to meet all regulatory building requirements comes tumbling
down without cause, it probably means something was wrong with the requirements. We pose that
the same is true here: the fact that the ES3B is proven to be insufficiently secure to the degree
shown in this paper while still meeting all applicable legal requirements implies that the legal
requirements are grossly insufficient. If we decide we want to continue voting on computers, the
legal requirements must at a minimum address basic computer security and stipulate that election
results can be independently verified. Existing voting computers will need to be modified to the
new standards or replaced if they cannot meet these new requirements.

9.3. DRE voting not given enough thought
DRE systems make us dependent on a single vote count done in software. People cannot see

electrons, so they cannot observe a vote count when a DRE voting systems is used. Insufficient
thought has been given to the large number of implicit trust relationships that come with DRE
systems, such as the near infinite trust placed in the entities building and certifying the systems. In
addition, one has to consider the possibility that outside attackers have surreptitious access to one or
more devices. Insider attacks are generally thought to be more prevalent, and they are harder to

21

19 For the sake of the argument let us assume an unpatched Windows 95 machine with an always-on unencrypted
wireless Internet connection, no virus scanner and an early Internet Explorer web browser to cast votes on an ASP script
running on an internal unpatched IIS 1.0 webserver.

prevent and/or detect. The latter is especially true in systems of which only insiders know how they
work.

We can find no evidence that any of the various trust relationships in the current DRE voting
systems in use in The Netherlands have been sufficiently explored. In fact, we cannot find any
documents stating that they were considered at all. We predict that very few, if any, cases would
warrant the choice for a DRE system after such an analysis was done. Even if a DRE system was
built according to today’s security requirements, it would still require almost infinite trust in a very
limited number of individuals and organizations, which we feel is fundamentally at odds with the
notion of a publicly verifiable election.

Given the fact that The Netherlands have a very simple electoral system compared to many
other countries20, the fact that The Netherlands is almost exclusively e-Voting can be excused only
by the fact that The Netherlands introduced the computers very early on, at a time when these
considerations had not yet surfaced.

Acknowledgments
We thank Job de Haas, Alex Le Heux, Hanno Liem, Peter Knoppers, Tim Kuijsten, Anne-

Marie Oostveen, Marcel van der Peijl, Carla van Rijsbergen, Huub Roem, Sander ‘t Sas, Ferry
Stoop, Christiaan Tan, Maurice Wessling, Philipp Wuensche, the Chaos Computer Club Berlin and
last but certainly not least the brave heroes at the municipalities that leant and sold us the Nedaps.

References
Brennan Center Task Force on Voting System Security (2006) The machinery of democracy:

Protecting elections in an electronic world.
Available at http://www.brennancenter.org/programs/downloads/Full20Report.pdf

Commission on Electronic Voting (2004) FIRST REPORT of the Commission on Electronic Voting
on the Secrecy, Accuracy and Testing of the Chosen Electronic Voting System,
Available at http://www.cev.ie/htm/report/download_first.htm

Ariel J. Feldman, J. Alex Halderman, Edward W. Felten (2006) Security Analysis of the Diebold
AccuVote-TS Voting Machine. Available at http://itpolicy.princeton.edu/voting/ts-paper.pdf

22

20 The Dutch cast only a single one-candidate vote per election, although sometimes two or three elections happen at the
same time.

